A Layer-Wise Theoretical Framework for Deep Learning of Convolutional Neural Networks

نویسندگان

چکیده

As research attention in deep learning has been focusing on pushing empirical results to a higher peak, remarkable progress made the performance race of machine applications past years. Yet based artificial neural networks still remains difficult understand as it is considered black-box approach. A lack understanding from theoretical perspective would not only hinder employment them where high-stakes decisions need be made, but also limit their future development intelligence expected robust, predictable and trustable. This paper aims provide methodology investigate train convolutional so ensure convergence. mathematical model matrix representations for first formulated an analytic layer-wise framework then proposed tested several common benchmarking image datasets. The case studies show reasonable trade-off between accuracy learning, highlight potential employing method finding appropriate number layers actual implementations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Collaborative Layer-Wise Discriminative Learning in Deep Neural Networks

Intermediate features at different layers of a deep neural network are known to be discriminative for visual patterns of different complexities. However, most existing works ignore such cross-layer heterogeneities when classifying samples of different complexities. For example, if a training sample has already been correctly classified at a specific layer with high confidence, we argue that it ...

متن کامل

Deep Convolutional Neural Networks with Layer-Wise Context Expansion and Attention

In this paper, we propose a deep convolutional neural network (CNN) with layer-wise context expansion and location-based attention, for large vocabulary speech recognition. In our model each higher layer uses information from broader contexts, along both the time and frequency dimensions, than its immediate lower layer. We show that both the layer-wise context expansion and the location-based a...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

On layer-wise representations in deep neural networks

On Layer-Wise Representations in Deep Neural Networks It is well-known that deep neural networks are forming an efficient internal representation of the learning problem. However, it is unclear how this efficient representation is distributed layer-wise, and how it arises from learning. In this thesis, we develop a kernel-based analysis for deep networks that quantifies the representation at ea...

متن کامل

Unsupervised Layer-Wise Model Selection in Deep Neural Networks

Deep Neural Networks (DNN) propose a new and efficient ML architecture based on the layer-wise building of several representation layers. A critical issue for DNNs remains model selection, e.g. selecting the number of neurons in each DNN layer. The hyper-parameter search space exponentially increases with the number of layers, making the popular grid search-based approach used for finding good ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2022

ISSN: ['2169-3536']

DOI: https://doi.org/10.1109/access.2022.3147869